Abstract

During the last decade, Atomic Force Microscopy (AFM) has been widely used to image the topography of various surfaces with corrugations down to the atomic scale [1,2]. Since then, development of new techniques based on AFM has been conducted to evaluate physical, chemical or mechanical surface properties [3]. We describe the use of near-field acoustic microscopy, based on AFM and hereafter referred to as Acoustic Microscopy by Atomic Force Microscopy (AFAM), as it has been developed earlier [4]. The relevance of this new scanning probe microscopy for high-resolution nondestructive testing and evaluation purposes is pointed out. It is shown that AFAM is capable of measuring elasticity on surfaces with a spatial resolution of less than 100 nm. Subsurface elastic properties and subsurface microdefect characterization can be performed by this technique. The high frequency Friction Force Microscopy (FFM) image, hereafter called Acoustic Friction Force Micropscopy (AFFM), reveals information different from the conventionally taken friction force image. We describe experimental and theoretical aspects of high-frequency atomic force and friction force microscopy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call