Abstract
Abstract This paper investigates the microphysical pathways and sensitivities within the Reisner2 bulk microphysical parameterization (BMP) of the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) for a precipitation event over the central Sierra Nevada on 12 February 1986. Using a single sounding initialization, the MM5 was run two-dimensionally at 2-km horizontal grid spacing, which was needed to realistically simulate the embedded convective cells within the orographic cloud. Unlike previous modeling studies of this event, a microphysical budget over the windward slope was calculated for each experiment, in which the importance of each microphysical process was quantified relative to the water vapor loss (WVL) rate. For the control MM5, the largest microphysical processes that contribute to surface precipitation over the Sierra windward slope are condensation (63% of WVL), snow deposition (33%), riming to form graupel (35%), and mel...
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have