Abstract

<h2>Summary</h2> Grain-boundary engineering is pivotal to fully utilize the mechanical, electrical, and thermal-transport properties of various materials. However, current methods in metallurgy rely almost exclusively on top-down approaches, making precise grain-boundary engineering, especially at nanoscale, difficult to achieve. Herein, we report a method to produce tailored grain-boundary conditions with nanoscale precision from colloidal metal nanocrystals through surface treatment followed by a pressure-sintering process. The resulting bulk grain-boundary materials (which we call "nanocrystal coins") possess a metal-like appearance and conductivity while inheriting the original domain features of the nanocrystal building blocks. Nanoindentation measurements confirmed the superior mechanical hardness of the obtained materials. Further, we use this method to fabricate, for the first time, a single-component bulk metallic glass from amorphous palladium nanoparticles. Our discovery may spur the development of new materials whose functionality crucially depends on the domain configuration at nanoscale, such as superhard materials, thermoelectric generators, and functional electrodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.