Abstract

We report the synthesis of bulk, highly oriented, crystalline 4H hexagonal silicon (4H-Si), through a metastable phase transformation upon heating the single-crystalline Si_{24} allotrope. Remarkably, the resulting 4H-Si crystallites exhibit an orientation relationship with the Si_{24} crystals, indicating a structural relationship between the two phases. Optical absorption measurements reveal that 4H-Si exhibits an indirect band gap near 1.2eV, in agreement with first principles calculations. The metastable crystalline transition pathway provides a novel route to access bulk crystalline 4H-Si in contrast to previous transformation paths that yield only nanocrystalline-disordered materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call