Abstract

In the paper, the performance of two Bulgarian dispersion models is tested against European Tracer Experiment (ETEX) first release data base. The first one is the LED puff model which was the core of the Bulgarian Emergency Response System during all releases of ETEX. The second one is the newly created Eulerian dispersion model EMAP. These models have two important features: they are PC-oriented and they use quite a limited amount of input meteorological information. First, a number of runs with various source configurations are made on meteorological data produced by ECMWF. The aim of these runs is to verify the models’ ability to simulate reliably ETEX first release. To this end, a set of statistical criteria selected in ATMES (Atmospheric Transport Models Evaluation Study, see Klug et al., 1992are used. The best runs for both models are obtained when the source is presented as a column towering from the ground to heights of 400–700 m. These runs took part in the second phase of ETEX (ETEX-II), the so called ATMES-type exercise where EMAP ranked ninth and LED - fourteenth among 34 models. Here, additional sets of EMAP are presented where in the first run the value of the horizontal diffusion coefficient is varied and in the other runs different meteorological data sets are tested. The results obtained from the first run show that the values of K h =4–6×10 4 m 2 s -1 produce fields which fit experimental data best. The other sets of runs show that the higher the frequency of the meteorological data, the better the simulation. The results can be improved by linear interpolation of the meteorological parameters with time, the best fitting obtained with interpolation at each time step.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call