Abstract
Worldwide urbanization has accelerated expansion of urban built-up lands and resulted in substantial negative impacts on the global environments. Precisely measuring the urban sprawl is becoming an increasing need. Among the satellite-based earth observation systems, the Landsat and ASTER data are most suitable for mesoscale measurements of urban changes. Nevertheless, to date the difference in the capability of mapping built-up land between the two sensors is not clear. Therefore, this study compared the performances of the Landsat-7 ETM+ and ASTER sensors for built-up land mapping in the coastal areas of southeastern China. The comparison was implemented on three date-coincident image pairs and achieved by using three approaches, including per-band-based, index-based, and classification-based comparisons. The index used is the Index-based Built-up Index (IBI), while the classification algorithm employed is the Support Vector Machine (SVM). Results show that in the study areas, ETM+ and ASTER have an overall similar performance in built-up land mapping but also differ in several aspects. The IBI values determined from ASTER were consistently higher than from ETM+ by up to 45.54% according to percentage difference. The ASTER also estimates more built-up land area than ETM+ by 5.9–6.3% estimated with the IBI-based approach or 3.9–6.1% with the SVM classification. The differences in the spectral response functions and spatial resolution between relative spectral bands of the two sensors are attributed to these different performances.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have