Abstract
Labor is the most expensive in retail stores. In order to increase the profit of retail stores, unmanned stores could be a solution for reducing labor cost. Deep learning is a good way for recognition, classification, and so on; in particular, it has high accuracy and can be implemented in real time. Based on deep learning, in this paper, we use multiple deep learning models to solve the problems often encountered in unmanned stores. Instead of using multiple different sensors, only five cameras are used as sensors to build a high-accuracy, low-cost unmanned store; for the full use of space, we then propose a method for calculating stacked goods, so that the space can be effectively used. For checkout, without a checking counter, we use a Siamese network combined with the deep learning model to directly identify products instantly purchased. As for protecting the store from theft, a new architecture was proposed, which can detect possible theft from any angle of the store and prevent unnecessary financial losses in unmanned stores. As all the customers’ buying records are identified and recorded in the server, it can be used to identify the popularity of the product. In particular, it can reduce the stock of unpopular products and reduce inventory.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have