Abstract

PurposeThe purpose of this paper is to determine conditions under which good metallurgical bonding was achieved in 3D objects formed by depositing tin droplets layer by layer.Design/methodology/approachMolten tin droplets (0.18‐0.75 mm diameter) were deposited using a pneumatic droplet generator on an aluminum substrate. The primary parameters varied in experiments were those found to most affect bonding between droplets on different layers: droplet temperature (varied from 250 to 325°C) and substrate temperature (varied from 100 to 190°C). Droplet generation frequency was kept low enough (1‐10 Hz) that each layer of droplets solidified and cooled down before another molten droplet impinged on it.FindingsIn this paper, a one dimensional heat transfer model was used to predict the minimum droplet and substrate temperatures required to remelt a thin layer of the substrate and ensure good bonding of impinging droplets. Cross‐sections through samples confirmed that increasing either the droplet temperature or the substrate temperature to the predicted remelting region produces good bonding between deposition layers.Originality/valueThis paper used a practical model to provide reasonable prediction of conditions for droplet fusion which is essential to droplet‐based manufacturing. The feasibility of fabricating 3D metal objects by deposition of molten metal droplets has been well demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.