Abstract
Heterogeneity during Mycobacterium tuberculosis (Mtb) infection greatly impacts disease outcome and complicates treatment. This heterogeneity encompasses many facets, spanning local differences in the host immune response to Mtb and the environment experienced by the bacterium, to nonuniformity in Mtb replication state. All of these facets are interlinked and each can affect Mtb susceptibility to antibiotic treatment. In-depth spatiotemporal understanding of Mtb-host interactions is thus critical to both fundamental comprehension of Mtb infection biology and for the development of effective therapeutic regimens. Such spatiotemporal understanding dictates the need for analysis at the single bacterium/cell level in the context of intact tissue architecture, which has been a significant technical challenge. Excitingly, innovations in spatial single cell methodology have opened the door to such studies, beginning to illuminate aspects ranging from intergranuloma differences in cellular composition and phenotype, to sublocation differences in Mtb physiology and replication state. In this perspective, we discuss recent studies that demonstrate the potential of these methodological advancements to reveal critical spatiotemporal insight into Mtb-host interactions, and highlight future avenues of research made possible by these advances.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have