Abstract

Sensors are susceptible to failure when exposed to extreme conditions over long periods of time. Besides they can be affected by noise or electrical interference. Models (Machine Learning or others) obtained from these faulty and noisy sensors may be less reliable. In this paper, we propose a data augmentation approach for making neural networks more robust to missing and faulty sensor data. This approach is shown to be effective in a real life industrial application that uses data of various sensors to predict the wear of an automotive fuel-system component. Empirical results show that the proposed approach leads to more robust neural network in this particular application than existing methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.