Abstract
Sensors are now commonly employed for monitoring and controlling of engineering systems. Despite significant advances in sensor technologies and their reliability, sensor fault is inevitable. Sensor data reconstruction methods have been studied to recover the missing or faulty sensor data, as well as to enable sensor fault detection and identification. Most existing sensor data reconstruction methods use only the spatial correlations among the sensor data, but they rarely consider the temporal correlations among the data. Use of temporal correlations among the sensor data can potentially improve the accuracy for reconstructing the data. This paper presents a data-driven bidirectional recurrent neural network (BRNN) for sensor data reconstruction, taking into consideration the spatiotemporal correlations among the sensor data. The methodology is demonstrated using the sensor data collected from the Telegraph Road Bridge located along the I-275 Corridor in Michigan. The results show that the BRNN-based method performs better than other current data-driven methods for accurately reconstructing the sensor data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.