Abstract

Marine environmental monitoring efforts often rely on the bioaccumulation of persistent anthropogenic contaminants in organisms to create a spatiotemporal record of the ecosystem. Intercorrelation results from the origin, uptake, and transport of these contaminants throughout the ecosystem and may be affected by organism-specific processes such as biotransformation. Here, we explore trends that machine learning tools reveal about a large, recently released environmental chemistry data set of common anthropogenic pollutants measured in the eggs of five seabird species from the North Pacific Ocean. We modeled these data with a variety of machine learning approaches and found models that could accurately determine a range of taxonomic and spatiotemporal trends. We illustrate a general workflow and set of analysis tools that can be used to identify interpretable models which perform nearly as well as state-of-the-art "black boxes." For example, we found shallow decision trees that could resolve genus with greater than 96% accuracy using as few as two analytes and a k-nearest neighbor classifier that could resolve species differences with more than 94% accuracy using only five analytes. The benefits of interpretability outweighed the marginally improved accuracy of more complex models. This demonstrates how machine learning may be used to discover rational, quantitative trends in these systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.