Abstract
Electronic structures of zigzag edged graphene nanoribbons (ZGNRs) doped with boron (B) or nitrogen (N) atoms are investigated by spin polarized first-principles calculations. We find that ZGNRs can be tuned to be either semiconducting, half-metallic, or metallic by controlling the distance of the impurity atoms to the edges. A new scheme is identified to achieve full half-metallicity in ZGNRs by doping B atom at one edge and N atom at the other. We find that the origin of the half-metallicity is due to interaction between the edge states and B/N atoms which results in direct control over the electron occupation of the edge states. This mechanism is so robust that full half-metallicity can always be produced in ZGNRs irrespective of the ribbon width, which opens new possibilities for applications of ZGNRs in spintronic devices.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have