Abstract
Nanostructured Li4Ti5O12/CNT composite particles were synthesized using an aerosol spray drying process followed by thermal annealing. After assembling into CNT networks, lightweight, flexible and binder-free Li4Ti5O12/CNT anodes were fabricated for lithium-ion batteries. Electrodes fabricated from these nanocomposites showed effective electron and ion transport and, more importantly, more robust structure compared to traditional binder-bonded electrodes. The electrodes delivered a high reversible capacity and superior rate performance up to an extremely high rate of 100C. Moreover, ultralong cycling stability was attained through 8000 rapid charge-discharge cycles with 89% capacity retention. These results demonstrate the feasibility of ultrafast batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.