Abstract

ABSTRACTBuilding detection in high spatial resolution optical remote sensing images is important for city planning, navigation, population estimation and many other applications. Although many methods have been proposed, building detection is still a challenging problem due to complex scenes and small or arbitrarily orientated buildings. Moreover, most algorithms detect rotated buildings with horizontal bounding boxes leading to many background pixels being preserved in the final detection, which is not beneficial for post-processing. To address these problems, we present the U-Rotation Detection Network (U-RDN), which can effectively detect buildings with arbitrarily orientated detection bounding boxes. First, the U-Rotation Region Proposal Network (U-RRPN) is proposed to generate rotated proposals through rotated anchors. Then, a Rotation Fast-Region Convolutional Neural Network (RFast-RCNN) is performed, which extracts fixed-size features from rotated proposals and utilizes them to obtain fine-detections. For extracting fixed-size features from rotated proposals, we propose Auto Mask Region-Of-Interest Align (AM-ROI Align). The AM-ROI Align not only reduces abundant noise but also preserves the proper information of an object in ROI. Experimental results using the public building dataset, SpaceNet, show that our method can detect buildings with skewed bounding boxes and has a state-of-the-art performance compared with other algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.