Abstract

Large language models (LLM) have gathered attention with the advent of ChatGPT. However, developing personalized LLM models faces challenges in real-world applications due to data scarcity and privacy concerns. Federated learning addresses these issues, providing collaborative training while preserving the client’s data. Although it has made significant progress, federated learning still faces ongoing challenges, such as communication efficiency, heterogeneous data, and privacy-preserving methods. This paper presents a novel, fully decentralized federated learning framework for LLMs to address these challenges. We utilize different blockchain-federated LLM (BC-FL) algorithms, effectively balancing the trade-off between latency and accuracy in a decentralized-federated learning environment. Additionally, we address the challenge of communication overhead in peer-to-peer networks by optimizing the path for weight transfer and mitigating node anomalies. We conducted experiments to evaluate memory usage and latency in server and serverless environments. Our results demonstrate a decrease in latency by 5X and a 13% increase in accuracy for serverless cases. Comparisons between synchronous and asynchronous scenarios revealed a 76% reduction in information passing time for the latter. The PageRank method is most efficient in eliminating anomalous nodes for better performance of the global federated LLM model. The code is available on GitHub (https://github.com/Sreebhargavibalijaa/Federated_finetuning_LLM-s_p2p_environment)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.