Abstract

In particular, predicting the temperature and humidity information plays a crucial role in plantation, estimating rainfalls and climate change, and predicting air quality via specified geographical regions. The temperature and humidity forecasting information is occasionally presented with low accuracy due to uncertain techniques and vast methods that employ different sensors and models. For this reason, this work proposes an Internet of Things (IoT) temperature and humidity forecasting model based on an improved whale optimization algorithm with long short-term memory (IWOA-LSTM) technique. To increase the convergence speed processing time and overcome the local optimization problem, the IWOA is introduced. The number of hidden layers, learning rate momentum, and weight decay of the LSTM optimized using the IWOA. The actual temperature and humidity data are collected using DHT11 and ESP8266 NodeMCU practical model and processed using the ThingSpeak platform. The processing data stage depends on filling the missing data gaps using the rolling average technique (RAT). The performance evaluation of the proposed IWOA-LSTM forecasting model is assessed using some statistical functions, namely known as mean square error, mean absolute error, root mean square error, and mean absolute percentage error. The IWOA-LSTM techniques were also assessed using throughput, latency, and power consumption. The developed IWOA-LSTM model shows high accuracy, leading to better forecasting information than other forecasting models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.