Abstract

Perception and vehicle control remain major challenges in the autonomous driving domain. To find a proper system configuration, thorough testing is needed. Recent advances in graphics and physics simulation allow researchers to build highly realistic simulations that can be used for testing in safety-critical domains and inaccessible environments. Despite the high complexity of urban environments, it is the non-urban areas that are more challenging. Nevertheless, the existing simulators focus mainly on urban driving. Therefore, in this work, we describe our approach to building a flexible real-time testing platform for unmanned ground vehicles for indoor and off-road environments. Our platform consists of our original simulator, robotic operating system (ROS), and a bridge between them. To enable compatibility and real-time communication with ROS, we generate data interchangeable with real-life readings and propose our original communication solution, UDP Bridge, that enables up to 9.5 times faster communication than the existing solution, ROS#. As a result, all of the autonomy algorithms can be run in real-time directly in ROS, which is how we obtained our experimental results. We provide detailed descriptions of the components used to build our integrated platform.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call