Abstract

ROS (Robot Operating System) is one of the most popular robotic software development frameworks. Robotic systems in safety-critical domains are usually subject to hard realtime constraints, so timing behaviors must be formally modeled and analyzed to guarantee that real-time constraints are always honored at run-time. Although a series of analysis techniques has been proposed to analyze the timing performance of ROS 2, the state-of-the-art still generates pessimistic results for ROS 2 systems modeled as DAG (Directed Acyclic Graph). This paper focuses on the analysis of such systems, and proposes techniques to analyze the timing performance in a more precise manner. Experiments with both randomly generated workload and a case study are conducted to evaluate and demonstrate our results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.