Abstract
Tam Ky - Phuoc Son area has great potential for gold mineral with 98 gold occurrences, but the evaluation of the entire gold-mineralization potential of the area is still very limited, while this is considered as a basis for planning, exploration, and mining. The paper uses an Artificial Intelligence model which has a name Random Forest to build predictive modeling of mineral perspectivity and to map the gold mineral prospect of the study area. 12 influencing factors are selected to build the dataset for model training and mapping gold minerals prospect, including Geology, fault systems (NE-SW faults, NW-SE faults, sub meridian faults, sub-latitude faults), Bouguer geophysical anomaly, a geochemical anomaly of silver (Ag), gold ( Au), lead (Pb), zinc (Zn), copper (Cu) and distance to the geologic boundary of complexes related to gold mineralization. The data which are generated from these factors are 12 fuzzy maps. This data combines with 98 occurrences’ locations to create a dataset that is used to train a model of mineral perspectivity using the Random Forest algorithm. After training the model is evaluated by validation. The results of the Random Forest predictive modeling of mineral prospects are well trained with an accuracy of 95.99% on the training set and 83.05 on the validation set, the performance of the model is excellent on both datasets with AUC of 0.993 and 0.95, respectively. Finally, a mineral perspectivity map is built using the trained model. The study area is divided into 3 types of areas: high, medium, and low prospects. The area of high prospect is 982.8 km2, covering 71% of the gold occurrences.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have