Abstract

In this article, we aim to develop and study a highly sensitive and selective cm2 scale graphene-based gas sensor. We present the technology used to fabricate sensors which integrate monolayer chemical vapour deposition graphene: photolithography and transfer of layers. Characterization techniques (optical microscopy, AFM, micro-Raman spectroscopy, transport electrical measurements) ensure a diagnosis of graphene ribbons and allow good reproducibility of technological processes. We present the results of gas characterizations after a 200 ppm NO2 exposure. We propose a novel approach for the modelling of the sensor response with a three-site adsorption/desorption Langmuir model. This innovative way of modelling the sensor response should provide a better understanding of the sensor’s kinetic and help to overcome the long response time observed with graphene gas sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.