Abstract
Plastic collapse and buckling are the key structural failure criteria in 3D concrete printing (3DCP). This study aims to analyze the effect of different geometrical designs and printing factors on the buildability performance of 3DCP structures. Due to the high number of variables involved, the Design of Experiment (DOE) has been used to reduce the number of simulations. In geometrical design parameters, the structure’s design is more sensitive, followed by the width and length of the printed design. The buildability increases when we move from sharp corners to more stable structures like fillets and circular geometry. For geometrical design parameters, a maximum buildability of 74% of the designed height is achieved for circular design with the highest width and lowest diameter. For printing parameters, the highest buildability of 486 mm (81%) is achieved for the lower values of printing speed and layer height. The study analyzed failure phenomena of buckling and yield strength for the tested combination of parameters. The study analyzed the sensitivity analysis of individual parameters and their combination for maximum buildability and developed the low order polynomial regression equation for each printing parameter and geometrical factors. Based on the analysis of the results, the study also proposed different new printing strategies to increase the overall performance of the printing process.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have