Abstract

ABSTRACTThis article presents the buckling analysis of laminated composite stiffened plates subjected to partial in-plane edge loading. The finite element method is used to carry out the analysis. The eight-noded isoparametric degenerated shell element with C0 continuity and first-order shear deformation and a compatible three-noded curved beam element are used to model the plate skin and the stiffeners, respectively. The eigen value analysis is carried out to track the buckling load. The convergence study is performed for some specific problems and the results are compared with the available results in the literature. It is observed that the convergence of results is very fast for this finite element model. Effect of different parameters like orientation of fibers, number of layers, and loading types are considered in the present investigation. It is also observed that all these parameters have significant effect on the buckling response of the composite stiffened plate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.