Abstract

The dynamic instability characteristics of stiffened shell panels subjected to partial in-plane harmonic edge loading are investigated in this paper. The eight-noded isoparametric degenerated shell element and a compatible three-noded curved beam element are used to model the shell panels and the stiffeners, respectively. As the usual formulation of degenerated beam element is found to overestimate the torsional rigidity, an attempt has been made to reformulate it in an efficient manner. Moreover, the new formulation for the beam element requires five degrees of freedom per node as that of shell element. The method of Hill's infinite determinant is applied to analyze the dynamic instability regions. Numerical results are presented through convergence and comparison with the published results from the literature. The effects of parameters like loading type and shell geometry are considered in the dynamic instability analysis of stiffened panels subjected to non-uniform in-plane harmonic loads along the boundaries. The tension buckling aspect of the stiffened panels are also considered and the dynamic stability behavior due to tensile in-plane edge loading is studied for the concentrated load.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call