Abstract

The buckling and the postbuckling characteristics of nanocrystalline nano-beams with/without surface stress residuals are investigated. A hybrid model is proposed where a non-classical beam model is incorporated with a size-dependent micromechanical model. The micromechanical model has the merit of accounting for the beam material structure effects, i.e. the grain size and the grain boundary effects. To account for the beam size effects, the couple stress theory is implemented where some measures are added to capture the grain rigid rotation effects. The proposed hybrid model is harnessed to derive the governing equations of a nano-beam subjected to an axial compressive load accounting for the mid-plane stretching according to von-Karman kinematics and the surface stress residuals. Analytical solutions for the prebuckling and postbuckling configurations and natural frequencies as functions of the applied compressive axial load are derived. The effects of the beam material structure and the beam size on the beam’s prebuckling characteristics and the postbuckling configurations and natural frequencies are studied. The obtained results reveal that both the size and the material structure of nanobeams have great impacts on their buckling characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.