Abstract

The present study investigates buckling characteristics of cut-out borne stiffened hyperbolic paraboloid shell panel made of laminated composites using finite element analysis to evaluate the governing differential equations of global buckling of the structure. The finite element code is validated by solving benchmark problems from literature. Different parametric variations are studied to find the optimum panel buckling load. Laminations, boundary conditions, depth of stiffener and arrangement of stiffeners are found to influence the panel buckling load. Effect of different parameters like cut-out size, shell width to thickness ratio, degree of orthotropy and fiber orientation angle of the composite layers on buckling load are also studied. Parametric and comparative studies are conducted to analyze the buckling strength of composite hyperbolic paraboloid shell panel with cut-out.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call