Abstract

Buckling of composite stiffened cylindrical shell panels having cutout is analyzed using the finite element approach. Shell panel and stiffeners are modeled using first-order shear deformation theory and considering displacement compatibility at the stiffener-panel interface. Convergence and validation studies are conducted to establish the accuracy of the present approach. An attempt is made to maximize the uniaxial and biaxial buckling loads by varying the lamination, boundary conditions, load position, depth of stiffeners, and their arrangements. Parametric studies show that buckling load and mode shapes depend on the size of cutout, ratio of shell width to thickness, degree of orthotropy, and fiber orientation angle. The parametric variations considered here may help the practicing engineers to have an elaborate design aid for improving the buckling strength of such shell panels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.