Abstract
The present study is concerned with the free vibration and buckling analysis of a skew sandwich plate with a viscoelastic material core fixed between a functionally graded material constraining layer and a base layer of elastic material. The sandwich plate theory is followed to obtain the governing equations of motion in which the displacement fields of the viscoelastic core are assumed to have a linear variation between those of the two face layers. Finite element method based on first-order shear deformation theory is used to develop the governing equations of motion of the plate. The effects of different parameters such as skew angle, aspect ratio, thickness ratio, and volume fraction index on static and dynamic characteristics of the plate are examined. The increase in the skew angle has increasing effect on both natural the frequencies and critical buckling loads, whereas the fundamental loss factor decreases. The volume fraction index and various boundary conditions also have significant effects on the static and dynamic behavior of the plate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.