Abstract

This study aims to understand the response of the ring stiffened cylinders made up of hybrid composites subjected to buckling loads by using the concepts of Design of Experiments (DOE) and optimization by using Finite Element Method (FEM) simulation software Ansys workbench V15. Carbon epoxy and E-glass epoxy composites were used in the hybrid composite. This hybrid composite was analyzed by using different layup angles. Central composite design (CCD) was used to perform design of experiments (D.O.E) and kriging method was used to generate a response surface. The response surface optimization (RSO) was performed by using the method of the multi-objective genetic algorithm (MOGA). After optimization, the best candidate was chosen and applied to the ring stiffened cylinder and eigenvalue buckling analysis was performed to understand the buckling behavior. Best laminate candidates with high buckling strength have been identified. A generalized procedure of the laminate optimization and analysis have been shown.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.