Abstract
We present a natural generalization of the Buckley-James-type estimator for traditional survival data to right-censored length-biased data under the accelerated failure time (AFT) model. Length-biased data are often encountered in prevalent cohort studies and cancer screening trials. Informative right censoring induced by length-biased sampling creates additional challenges in modeling the effects of risk factors on the unbiased failure times for the target population. In this article, we evaluate covariate effects on the failure times of the target population under the AFT model given the observed length-biased data. We construct a Buckley-James-type estimating equation, develop an iterative computing algorithm, and establish the asymptotic properties of the estimators. We assess the finite-sample properties of the proposed estimators against the estimators obtained from the existing methods. Data from a prevalent cohort study of patients with dementia are used to illustrate the proposed methodology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.