Abstract
Antibiotic resistance is a global health challenge, and the COVID-19 pandemic has amplified the urgency to understand its airborne transmission. The bursting of bubbles is a fundamental phenomenon in natural and industrial processes, with the potential to encapsulate or adsorb antibiotic-resistant bacteria (ARB). However, there is no evidence to date for bubble-mediated antibiotic resistance dissemination. Here, we show that bubbles can eject abundant bacteria to the air, form stable biofilms over the air-water interface, and provide opportunities for cell-cell contact that facilitates horizontal gene transfer at and over the air-liquid interface. The extracellular matrix (ECM) on bacteria can increase bubble attachment on biofilms, increase bubble lifetime, and, thus, produce abundant small droplets. We show through single-bubble probe atomic force microscopy and molecular dynamics simulations that hydrophobic interactions with polysaccharides control how the bubble interacts with the ECM. These results highlight the importance of bubbles and its physicochemical interaction with ECM in facilitating antibiotic resistance dissemination and fulfill the framework on antibiotic resistance dissemination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.