Abstract

ABSTRACTIn the present work, the synergistic effect of high concentration hydrogen and helium on the dislocation loops and bubbles as well as their correlations in reduced-activation ferritic/martensitic (RAFM) steels is investigated. Such an effect was transmuted from 14 MeV neutron irradiation and has been one of the most challenging issues for RAFM steels for future fusion reactors. After low dose (0.18 dpa) high concentration (5000 appm) single-ion helium irradiation at 723 K, very large dislocation loops were observed, and the majority of bubbles were inside dislocation loops, forming bubble-loop complexes. These bubble-loop complexes defects were also present in hydrogen/helium and helium/hydrogen sequential-ion irradiated steels. Pre-irradiated hydrogen ion effectively inhibited the later growth of loops induced by helium post-irradiation, and the higher the ratio of hydrogen to helium fluence, the greater the effect of inhibition. At high fluence of hydrogen pre-irradiation, the structure of bubble-loop complexes disappeared. On the other hand, hydrogen post-irradiation promoted the growth of loops induced by helium pre-irradiation, and the higher the ratio of hydrogen to helium fluence, the greater the effect of promotion. The mechanisms for hydrogen/helium synergistic effects are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.