Abstract

The hydrodynamics of a gas–solid fluidized bed (FB) is affected by the bubble diameter, which in turn strongly influences the performance of a fluidized bed reactor (FBR). Thus, determining the bubble diameter accurately is of crucial importance in the design and operation of an FBR. Various equations are available for calculating the bubble diameter in an FBR. It has been found in this study that these models show a large variation while predicting the experimentally measured bubble diameters. Accordingly, the present study proposes a new equation for computing the bubble diameter in a fluidized bed. This equation has been developed using an efficient, yet infrequently employed computational intelligence (CI)-based datadriven modelling method termed genetic programming (GP). The prediction and generalization performance of the GP-based equation has been compared with that of a number of currently available equations for computing the bubble diameter in a fluidized bed and the results obtained show a good performance by the newly developed equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.