Abstract

We analyse the controlled generation of bubbles of a given size at a determined bubbling rate in a co-flowing water stream forcing the gas flow. The temporal evolution of the bubble size, R(t), the air flow rate, Qa(t), and the pressure evolution inside the bubble, pb(t), during the bubbling process are reported. To that aim, the temporal evolution of the bubble shape and the pressure inside the air feeding chamber, pc(t), where a harmonic perturbation is induced using a loudspeaker, are obtained from high-speed images synchronized with pressure measurements. A model is developed to describe the unsteady motion of the gas stream along the injection needle, coupled with the Rayleigh-Plesset equation for the growing bubble, allowing us to obtain pb(t). Thus, the minimum pressure amplitudes required inside the forming bubble to control their size and bubbling frequency are provided as a function of the gas flow rate, the liquid velocity, uw, and the forcing frequency, ff. Two different behaviors have been observed, depending on the liquid-to-gas velocity ratio, Λ=uw/ua. For small enough values of Λ, the critical pressure amplitude is given by ps∼ρacuaStf3, associated to a rapid pressure increase taking place during an interval of time of the order of the acoustic time. However, for larger values of Λ, ps∼ρuw2Stf3Λ−1/5We−1/4. Here ρ and ρa are the liquid and gas densities respectively, c the speed of sound in air and Stf=ffro/uw and We=ρuw2ro/σ the Strouhal and Weber numbers, where ro denotes the outer radius of the injector.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.