Abstract

In this paper we study the bubble dynamics driven by an aspherical acoustic field, based on the theory of hydrodynamics. Evolution equations for an aspherical bubble are derived under the aspherical acoustic driving. The numerical calculations show that the aspherical bubble can oscillate stably and periodically under suitable conditions, which is out of the explanation of spherical perturbation theory. Furthermore, under some controlling parameters, the aspherical distortion can either grow rapidly, leading to the bubble's breakdown, or decay gradually making the bubble spherical, which is similar to the result of the perturbation theory driven by a spherical ultrasound.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.