Abstract

Bubble-free electroosmotic flow (fr-EOF) of aqueous electrolytes in microfluidic channels with integrated electrodes is demonstrated. Undesirable electrolytic bubble formation is avoided by applying a periodic, zero net charge current to generate a nonzero average potential between the electrodes. Electrokinetic pressure generated in this active segment of the microchannel drives now upstream and downstream where electric field is absent. Flow rates commensurate with theoretical predictions for EOF driven by a dc voltage equivalent to the average net potential have been measured. By significantly reducing driving potentials and liquid exposure time to strong electric fields, fr-EOF opens the way for fully integrated, versatile micro total analysis systems (/spl mu/TAS).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.