Abstract

Gas bubbling can be an effective means to float out alumina inclusions from liquid steel in a ladle. However, large spherical cap bubbles are formed when using porous plugs, as the liquid steel is nonwetting to the porous refractory. These bubbles rise rapidly through the liquid steel, forming a fast‐moving bubble plume, restricting contact times. Sized microbubbles, by contrast, have now been generated in liquid metals by shearing methods, involving linear crossflows to an entering flow of gas, or alternatively by rotational shearing. Combined with these convective shearing forces, local kinetic energy of turbulence can also play an important part in determining final microbubble size distributions. As microbubbles have much smaller rise velocities and present a far greater inclusion capture surface area than those of a single large bubble of the same gross volume, this will allow us to remove sub‐50 μm inclusions from liquid steel. It is expected that this goal will require a redesign of current ladle shrouds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.