Abstract

3D calculations with Computational Fluid Dynamics were carried out to evaluate the flow pattern under industrial conditions with different gas flow rates at the steel plant of Saarstahl AG. The generated flow pattern consists of a circulating loop characterised by an upward flow driven by the argon gas and a downward flow close to the wall on the opposite side of the porous plug in the case of a gas flow rate of 27 STP m3/h. When this high gas flow rate is used, the gas bubbles are taking a straight way from the inlet, but further up the momentum from the circulating steel is affecting the path of the gas bubbles followed by a breakthrough zone at the top surface. Intensive experiments with the 170-t ladle of Saarstahl AG revealed typical open-eyes. Large open-eyes coupled with turbulences in the surface were generated in the case of gas flow rates between 20 and 30 STP m3/h. Intensive turbulences and even smoke formation were identified when a gas flow rate of > 30 STP m3/h was applied. For the investigation of the influence of gas stirring processes on the mixing phenomena samples were taken from the melt immediately after alloying. It could be seen that the analyses of Al, C, Mn and Si increased to the target analyses due to alloying and introduction of Ar through the porous plug. The total time for complete alloying depended on the elements within these experiments. It seemed to be that the alloying time increased in the order of Al, C, Mn and Si. For on-line control and analysis of open-eyes in the melt surface during ladle stirring, a BFI image processing system was installed at the steel plant of Saarstahl. It consisted of a conventional digital camera equipped with an infrared filter and coupled to an image processing software. Primary tests showed a slight influence of the open-eye diameter at the end of the ladle treatment on inclusion densities in the liquid steel and oxidic K0 values of the finished wire rod. Additional experiments were performed but only a small correlation existed between the stirring energy at the end of ladle treatment and the inclusion length index of the applied blue brittle tests. But as soon as an open-eye came into existence, the inclusion length was higher compared to those heats produced under a closed top slag.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.