Abstract

An acellular cholecyst derived extracellular matrix (b-CEM) of bubaline origin was prepared using anionic biological detergent. Healing potential of b-CEM was compared with commercially available collagen sheet (b-CS) and open wound (C) in full thickness skin wounds in rats. Thirty-six clinically healthy adult Sprague Dawley rats of either sex were randomly divided into three equal groups. Under general anesthesia, a full thickness skin wound (20 × 20 mm2) was created on the dorsum of each rat. The defect in group I was kept as open wound and was taken as control. In group II, the defect was repaired with commercially available collagen sheet (b-CS). In group III, the defect was repaired with cholecyst derived extracellular matrix of bovine origin (b-CEM). Planimetry, wound contracture, and immunological and histological observations were carried out to evaluate healing process. Significantly (P < 0.05) increased wound contraction was observed in b-CEM (III) as compared to control (I) and b-CS (II) on day 21. Histologically, improved epithelization, neovascularization, fibroplasia, and best arranged collagen fibers were observed in b-CEM (III) as early as on postimplantation day 21. These findings indicate that b-CEM have potential for biomedical applications for full thickness skin wound repair in rats.

Highlights

  • Skin protects the body from the external environment by maintaining temperature and homeostasis, as well as by performing immune surveillance and sensory detection [1]

  • These findings indicate that b-Cholecyst derived extracellular matrix (CEM) have potential for biomedical applications for full thickness skin wound repair in rats

  • The wound contraction is the centripetal displacement of the wound edges that facilitates its closure after trauma

Read more

Summary

Introduction

Skin protects the body from the external environment by maintaining temperature and homeostasis, as well as by performing immune surveillance and sensory detection [1]. Significant skin loss due to injury, genetic disorders, acute trauma, chronic wounds, or surgical procedures leading to damage of dermal or subdermal tissues cannot heal properly and can lead to serious consequences. Biological scaffolds derived from decellularized tissues are in use as surgical implants and scaffolds for regenerative medicine because extracellular matrix secreted from resident cells of each tissue and organ can provide favorable microenvironment that affects cell migration, proliferation, and differentiation [3, 4]. The biomaterials are materials intended to interface with biological systems to evaluate, treat, augment, or replace any tissue, organ, or function of the body [5]. Use of the acellular dermal graft in abdominal wall defects was reported with good success rate in rabbits [6]. Acellular biomaterials can stimulate the local environment to repair tissues without the regulatory and scientific challenges of cell-based therapies [7]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call