Abstract
The dormancy-associated MADS-box (DAM) gene DAM5 has crucial roles in bud endodormancy; however, the molecular regulatory mechanism of PpDAM5 in peach (Prunus persica) has not been elucidated. In this study, using yeast two-hybrid screening, we isolated a BTB-TAZ Domain Protein PpBT3, which interacts with PpDAM5 protein, in the peach cultivar ‘Chun xue’. As expected, we found that abscisic acid (ABA) maintained bud endodormancy and induced expression of the PpDAM5 gene, and that over-expressing PpDAM5 in Arabidopsis thaliana repressed seed germination. In contrast, over-expressing PpBT3 in A. thaliana promoted seed germination, and conferred resistance to ABA-mediated germination inhibition. Additionally, a qRT-PCR (quantitative real-time polymerase chain reaction) experiment suggested that the transcript level of PpBT3 gradually increased towards the endodormancy release period, which is the opposite trend of the expression pattern of PpDAM5. Our results suggest that PpBT3 modulates peach bud endodormancy by interacting with PpDAM5, thus revealing a new mechanism for regulating bud dormancy of perennial deciduous trees.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.