Abstract

Relative expression quantitative real-time polymerase chain reaction (RT-qPCR) experiments are a common means of estimating transcript abundances across biological groups and experimental treatments. One of the most frequently used expression measures that results from such experiments is the relative expression ratio (RE), which describes expression in experimental samples (i.e., RNA isolated from organisms, tissues, and/or cells that were exposed to one or more experimental or nonbaseline condition) in terms of fold change relative to calibrator samples (i.e., RNA isolated from organisms, tissues, and/or cells that were exposed to a control or baseline condition). Over the past decade, several models of RE have been proposed, and it is now clear that endogenous reference gene stability and amplification efficiency must be assessed in order to ensure that estimates of RE are valid. In this review, we summarize key issues associated with estimating RE from cycle threshold data. In addition, we describe several methods based on linear modeling that enable researchers to estimate model parameters and conduct quality control procedures that assess whether model assumptions have been violated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.