Abstract

High coverage whole genome DNA-sequencing enables identification of somatic structural variation (SSV) more evident in paired tumor and normal samples. Recent studies show that simultaneous analysis of paired samples provides a better resolution of SSV detection than subtracting shared SVs. However, available tools can neither identify all types of SSVs nor provide any rank information regarding their somatic features. In this paper, we have developed a Bayesian framework, by integrating read alignment information from both tumor and normal samples, called BSSV, to calculate the significance of each SSV. Tested by simulated data, the precision of BSSV is comparable to that of available tools and the false negative rate is significantly lowered. We have also applied this approach to The Cancer Genome Atlas breast cancer data for SSV detection. Many known breast cancer specific mutated genes like RAD51, BRIP1, ER, PGR and PTPRD have been successfully identified.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.