Abstract

Co-saliency detection, an emerging research area in saliency detection, aims to extract the common saliency from the multi images. The extracted co-saliency map has been utilized in various applications, such as in co-segmentation, co-recognition and so on. With the rapid development of image acquisition technology, the original digital images are becoming more and more clearly. The existing co-saliency detection methods processing these images need enormous computer memory along with high computational complexity. These limitations made it hard to satisfy the demand of real-time user interaction. This paper proposes a fast co-saliency detection method based on the image block partition and sparse feature extraction method (BSFCoS). Firstly, the images are divided into several uniform blocks, and the low-level features are extracted from Lab and RGB color spaces. In order to maintain the characteristics of the original images and reduce the number of feature points as well as possible, Truncated Power for sparse principal components method are employed to extract sparse features. Furthermore, K-Means method is adopted to cluster the extracted sparse features, and calculate the three salient feature weights. Finally, the co-saliency map was acquired from the feature fusion of the saliency map for single image and multi images. The proposed method has been tested and simulated on two benchmark datasets: Co-saliency Pairs and CMU Cornell iCoseg datasets. Compared with the existing co-saliency methods, BSFCoS has a significant running time improvement in multi images processing while ensuring detection results. Lastly, the co-segmentation method based on BSFCoS is also given and has a better co-segmentation performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.