Abstract

The exiting co-saliency detection methods achieve poor performance in computation speed and accuracy. Therefore, we propose a superpixel clustering based co-saliency detection method. The proposed method consists of three parts: multi-scale visual saliency map, weak co-saliency map and fusing stage. Multi-scale visual saliency map is generated by multi-scale superpixel pyramid with content-sensitive. Weak co-saliency map is computed by superpixel clustering feature space with RGB and CIELab color features as well as Gabor texture feature in order to the representation of global correlation. Lastly, a final strong co-saliency map is obtained by fusing the multi-scale visual saliency map and weak co-saliency map based on three kinds of metrics (contrast, position and repetition). The experiment results in the public datasets show that the proposed method improves the computation speed and the performance of co-saliency detection. A better and less time-consuming co-saliency map is obtained by comparing with other state-of-the-art co-saliency detection methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.