Abstract

Brute force orientation by an electric field is a promising way of controlling the orientation of polar molecules in the gas phase, but its application to condensed-phase molecules has been very limited. We studied the reorientation of formaldehyde molecules in a solid Ar matrix under the influence of a strong electric field using reflection absorption infrared spectroscopy. Asymptotically perfect alignment of the formaldehyde molecules along the field was achieved at field strengths exceeding 1×108 V m-1 . The vibrational bands of the aligned molecules exhibited a unidirectional Stark shift proportional to the field strength. The reorientation of the molecules was reversible despite the cryogenic solid environment of the system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call