Abstract

PurposeThe purpose of this paper is to study the effects of using different Brownian models on natural and mixed convection fluid flow and heat transfer inside the square enclosure filled with the AlOOH–water nanofluid.Design/methodology/approachDue to fulfill of this demand, five different models for the effective thermal conductivity and viscosity of the nanofluid are considered. The following results are presented for the Ra=107 to 1010 and Ri=0.01 to 100, whereas the volume fraction of the nanoparticles is varied from φ = 0.01 to 0.04.FindingsAccording to the obtained results, increasing of Rayleigh number and reduction of Richardson number leads to the higher values of the average Nusselt number and entropy generation. Also, it is realized that, variation trend of the average Nusselt number and entropy generation in all cases is increasing by growing the volume fraction. It is found that the obtained average Nusselt numbers and entropy generations with Koo and Kleinstreuer are the highest among all the studied cases, and it is followed by Patel, Vajjha and Das, Corcione and Maxwell–Brinkman models, respectively.Originality/valueBased on the results of present investigation, the Nusselt number difference predicted between the Maxwell–Brinkman model (as constant-property model) and Koo and Kleinstreuer model is about 7.84 per cent at 0.01 per cent volume fraction and 5.47 per cent at 0.04 per cent volume fraction for the Rayleigh number equal to 107. The entropy generation difference predicted between the two above studied model is about 8.05 per cent at 0.01 per cent volume fraction and 5.86 per cent at 0.04 per cent volume fraction for the Rayleigh number equal to 107. It is observed that using constant-property model has a significant difference in the obtained results with the results of other variable-property models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.