Abstract
Purpose The main aim of this work is to perform a numerical analysis on natural convection with entropy generation in a partially open triangular cavity with a local heat source. Design/methodology/approach The unsteady governing dimensionless partial differential equations with corresponding initially and boundary conditions were numerically solved by the finite difference method of the second-order accuracy. The effects of dimensionless time is studied, and other governing parameters are Rayleigh number (Ra = 103 − 105), Prandtl number (Pr = 6.82), heater length (w/L = 0.2, 0.4 and 0.6) and distance of heater ratio (δ/L = 0.3). Findings An increase in the Rayleigh number leads to an increment of the fluid flow and heat transfer rates. Average Bejan number decreases with Ra as opposed to the average Nusselt number and average entropy generation. High values of Ra characterize a formation of long-duration oscillating behavior for the average Nusselt number and entropy generation. Originality/value The originality of this work is to analyze the entropy generation in natural convection in a one side open and partial heater-located cavity. This is a good application for electronical systems or building design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Numerical Methods for Heat & Fluid Flow
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.