Abstract

Brownian dynamics simulation has been applied to analyze the influence of the electrostatic field of a reverse micelle on the enzyme-substrate complex formation inside a micelle. The probability that the enzyme-substrate complex will form from serine protease (trypsin) and the specific hydrophilic cationic substrate Nalpha-benzoyl-L: -arginine ethyl ester has been studied within the framework of the encounter complex formation theory. It has been shown that surfactant charge, dipole moments created by charged surfactant molecules and counterions, and permittivity of the inner core of reverse micelles can all be used as regulatory parameters to alter the substrate orientation near the active site of the enzyme and to change the probability that the enzyme-substrate complex will form.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.