Abstract

The form of crystallization colloidal gels is important as matrix for controlled release application. In this work, we use the Brownian Dynamics simulation to study the formation of gels by varying the inverse Debye length. We choose a fixed volume fraction, ϕ = 0.1 and a fixed quenched temperature at room temperature, while the inverse Debye length, κ, is varied. To ensures that the simulations cover the fluid-phase region down to the unstable phase region above the critical coagulation concentration, the inverse Debye length is varied between κ = 120σ−1 to 250σ−1. It shows that at the inverse Debye length κ = 250σ−1 the gel forms by colloidal particles that can support the active ingredient by forming long range network.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call