Abstract
The halogen bromine is far less abundant than chlorine, but it can be found at high concentrations in special materials like flame retarded plastics. The fate and effects of Br in waste incineration are not well understood. It may have similar implications like Cl for the volatilisation of heavy metals and the formation of low volatile organic compounds. Due to its lower oxidation potential, there is a risk of formation of elementary Br2 in the offgas. Co-combustion tests of different types of Br containing plastic waste materials (up to 22%) and MSW in the TAMARA pilot plant for waste incineration were conducted to investigate the Br partitioning and the influence of Br on metal volatilisation. The Br inventory of the fuel mix was elevated to approx. 1 wt-%. All input and output mass flows of the furnace have been sampled and the partitioning of Cl, Br, S, and a number of heavy metals, has been calculated on the basis of closed mass balances. Organically-bound Br was typically released to more than 90% into the raw gas. Elementary Br2 was detected at high Br levels. Its presence was always analysed when all SO2 in the raw gas was oxidised to SO3. Br enhances the volatilisation of metals like K, Zn, Cd, Sn, Sb, and Pb out of the fuel bed principally in the same way as Cl. The tests gave strong indication that the promoting influence of the halogens on metal volatilisation is more pronounced than that of the fuel bed temperature. The volatilised metals are condensated on the fly ashes and are discharged along with the filter ashes. As long as a surplus of SO2 is present in the raw gas no Br2 is formed. Although the halogen induced transfer out of the fuel bed causes high concentrations of volatile metals in the filter ashes, a recovery is not economically feasible for the time being. The volatilisation gives no rise to metal emission problems as long as efficient dedusting is achieved. If there is a risk of Br2 formation, in wet scrubbing a reducing agent has to be added to the neutral scrubber for efficient abatement. Filter ashes should be disposed of in a way that enables access for recovery in the future. The exact volatilisation characteristics of the various metals have to be studied in future using specifically tailored experiments.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have